UB-VV100 preclinical safety data demonstrates overall low risk for off target transduction and has a favorable safety and biodistribution profile
Next generation VivoVec surface engineering promotes “immune synapse”-formation for improved in vivo CAR T cell generation
Manufacturing process development demonstrates steps for scalable manufacturing of cGMP-grade lentiviral vector drug product
SEATTLE, May 19, 2022 (GLOBE NEWSWIRE) — Umoja Biopharma, Inc., an immuno-oncology company pioneering off-the-shelf, integrated therapeutics that reprogram immune cells in vivo for patients with solid and hematologic malignancies, announced data from three presentations at the American Society of Gene and Cell Therapy (ASGCT) Annual Meeting on its scalable, off-the-shelf in vivo lentiviral vector-based platform, termed VivoVec, that has the potential to achieve efficient T cell transduction upon direct administration to patients.
“At this year’s ASGCT conference we’re excited to share for the very first time preclinical data showing our efforts to engineer lentiviral surface particles to structurally mimic the immune synapse. The immune synapse is the space formed between antigen presenting cells and T cells during T cell activation and we show that optimization of this synapse can enhance the efficiency of our in vivo CAR T cell platform, VivoVec, to create therapeutic T cells,” said Andy Scharenberg, M.D., co-founder and Chief Executive Officer of Umoja. “Our research team is also sharing updates on improvements made to our proprietary manufacturing process for VivoVec particles that supports scalable cGMP production for clinical trials. Altogether these studies continue to provide additional evidence that our multi-component in vivo CAR T cell therapeutics platform, which also includes universal TumorTag small molecules and the RACR/CAR for natural expansion and proliferation of therapeutic CAR T cells, has great potential to overcome critical obstacles facing the cell therapy industry.”
Umoja’s one oral and two poster presentations demonstrate progress in UB-VV100 IND-enabling studies, manufacturing platform development, and next generation VivoVec surface engineering. Preclinical data provides early evidence of the anti-tumor activity and preliminary preclinical safety of UB-VV100, Umoja’s preclinical candidate for the treatment of B cell malignancies. Preclinical safety studies completed to-date demonstrate the overall low risk for off target transduction after in vivo administration of UB-VV100 in two animal models, including a model of intranodal delivery. Additional development of next generation VivoVec particle surface engineering with costimulatory ligands to promote T cell binding, activation, and transduction by replicating immune synapse formation will enable efficient in vivo CAR T cell generation and subsequent anti-tumor immune activity. Umoja further describes a scalable, suspension cell culture-based manufacturing process capable of producing cGMP-grade lentiviral vector product for in vivo CAR T cell therapy.
Presentation highlights:
Abstract #: 1242
Title: Preclinical Activity and Safety of UB-VV100, A Novel Lentiviral Vector Product Designed for Selective and Effective In Vivo Engineering of Therapeutic Anti-CD19 CAR T Cells for B cell Malignancies
Presenter: Alissa Brandes, Ph.D., Principal Scientist, Umoja Biopharma
Key Highlights:
Abstract #: 879
Title: A Lentiviral-Based In Vivo CAR T Cell Generation Platform with Viral Particle Surface Engineering Incorporating Anti-CD3 Single Chain Variable Fragment and T Cell Costimulatory Molecules
Presenter: Christopher Nicolai, Ph.D., Senior Scientist, Umoja Biopharma
Key Highlights:
Abstract #: 1166
Title: Development of a Scalable, Suspension Cell Culture-Based Manufacturing Process for VivoVec, a Lentiviral Vector Platform for In Vivo CAR-T Cell Generation
Presenter: Jeff Plomer, Ph.D., Senior Director Process Development, Umoja Biopharma
Key Highlights:
Presentations can be accessed from the ASGCT website at https://annualmeeting.asgct.org/.
About Umoja Biopharma
Umoja Biopharma, Inc., is developing treatments for solid tumors and hematologic cancers that reprogram the patient’s immune system in vivo. Our technology platforms are designed to work synergistically as part of a therapeutic regimen that can be delivered to any patient, with any tumor, at any time. Based on pioneering work performed at Seattle Children’s Research Institute and Purdue University, Umoja’s approach is powered by novel cellular immunotherapy technologies including the VivoVec in vivo delivery platform, the RACR/CAR in vivo cell expansion/control platform, and the TumorTag targeting platform. Umoja believes its approach can broaden access to advanced immunotherapies to give more patients the hope of lasting remission. To learn more, visit http://www.umoja-biopharma.com.
Cautionary Note Regarding Forward-Looking Statements
This press release contains forward-looking statements about Umoja Biopharma, Inc. (the “Company,” “we,” “us,” or “our”). The Company has based these forward-looking statements largely on its current expectations, estimates, forecasts and projections about future events and financial trends that it believes may affect its financial condition, results of operations, business strategy and financial needs. In light of the significant uncertainties in these forward-looking statements, you should not rely upon forward-looking statements as predictions of future events. These statements are subject to risks and uncertainties that could cause the actual results to vary materially, including, among others, the risks inherent in drug development such as those associated with the initiation, cost, timing, progress and results of the Company’s current and future research and development programs, preclinical and clinical trials, as well as the economic, market and social disruptions due to the ongoing COVID-19 public health crisis. Except as required by law, the Company undertakes no obligation to update publicly any forward-looking statements for any reason.
Media Contact:
Darren Opland, Ph.D.
LifeSci Communications
darren@lifescicomms.com
Charlotte, North Carolina--(Newsfile Corp. - December 23, 2024) - cbdMD, Inc. (NYSE American: YCBD) (NYSE…
AUSTIN, TEXAS / ACCESSWIRE / December 23, 2024 / Interactive Strength Inc. (Nasdaq:TRNR) ("TRNR" or…
Originally published in Quest Diagnostics' 2023 Corporate Responsibility ReportNORTHAMPTON, MA / ACCESSWIRE / December 23,…
Marlborough, Massachusetts--(Newsfile Corp. - December 23, 2024) - Phio Pharmaceuticals Corp. (NASDAQ: PHIO), a clinical-stage…
WESTON, Fla.--(BUSINESS WIRE)--ILiAD Biotechnologies, LLC (ILiAD), a clinical stage biotech company developing the world’s most…
WESTON, Fla.--(BUSINESS WIRE)--ILiAD Biotechnologies, LLC (ILiAD), a clinical stage biotech company developing the world’s most…